4-nJ erbium all-fiber hybrid highly chirped dissipative soliton oscillator

I. S. Zhdanov, D. S. Kharenko, A. E. Bednyakova, M. P. Fedoruk, S. K. Turitsyn, S. A. Babin

Research output: Chapter in Book/Published conference outputConference publication

Abstract

Ultrafast fiber lasers with a high pulse energy at 1550 nm wavelength are important for a range of applications: from CARS [1], few-cycle pulse generation [2] and frequency metrology to THz-wave generation. These applications require not only the high pulse energy, but also short duration, and high generation stability. Highly chirped (chirp parameter > 10) dissipative soliton (HCDS) generation technique (HCDS) driven by the nonlinear polarization evolution (NPE) effect meets all the above requirements. Substantial HCDS energy increase has been obtained previously in Yb-fiber all-fiber NPE mode-locked cavity containing polarization maintaining (PM) and non-PM parts [3]. We have implemented this approach for 1.5 microns wavelength area for the first time in [4] demonstrating 165 fs dechirped duration and 0.93 nJ energy HCDS. We also observed a multi-pulse generation regime caused by NPE overdriving. In this work we extend our results and increase the single HCDS energy by significantly lengthening the all-fiber cavity.

Original languageEnglish
Title of host publication2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PublisherIEEE
ISBN (Electronic)9781728104690
DOIs
Publication statusPublished - 17 Oct 2019
Event2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Germany
Duration: 23 Jun 201927 Jun 2019

Conference

Conference2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Country/TerritoryGermany
CityMunich
Period23/06/1927/06/19

Fingerprint

Dive into the research topics of '4-nJ erbium all-fiber hybrid highly chirped dissipative soliton oscillator'. Together they form a unique fingerprint.

Cite this