A dedicated greedy pursuit algorithm for sparse spectral representation of music sound

Laura Rebollo-Neira, Gagan Aggarwal

    Research output: Contribution to journalArticlepeer-review

    Abstract

    A dedicated algorithm for sparse spectral representation of music sound is presented. The goal is to enable the representation of a piece of music signal as a linear superposition of as few spectral components as possible, without affecting the quality of the reproduction. A representation of this nature is said to be sparse. In the present context sparsity is accomplished by greedy selection of the spectral components, from an overcomplete set called a dictionary. The proposed algorithm is tailored to be applied with trigonometric dictionaries. Its distinctive feature being that it avoids the need for the actual construction of the whole dictionary, by implementing the required operations via the fast Fourier transform. The achieved sparsity is theoretically equivalent to that rendered by the orthogonal matching pursuit (OMP) method. The contribution of the proposed dedicated implementation is to extend the applicability of the standard OMP algorithm, by reducing its storage and computational demands. The suitability of the approach for producing sparse spectral representation is illustrated by comparison with the traditional method, in the line of the short time Fourier transform, involving only the corresponding orthonormal trigonometric basis.

    Original languageEnglish
    Pages (from-to)2933-2943
    Number of pages10
    JournalJournal of the Acoustical Society of America
    Volume140
    Issue number4
    DOIs
    Publication statusPublished - 28 Oct 2016

    Bibliographical note

    © 2016 Acoustical Society of America

    Fingerprint

    Dive into the research topics of 'A dedicated greedy pursuit algorithm for sparse spectral representation of music sound'. Together they form a unique fingerprint.

    Cite this