A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices

Jizhong Song, Sergei A. Kulinich, Jianhai Li, Yanli Liu, Haibo Zeng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

For all-solution-processed (ASP) devices, transparent conducting oxide (TCO) nanocrystal (NC) inks are anticipated as the next-generation electrodes to replace both those synthesized by sputtering techniques and those consisting of rare metals, but a universal and one-pot method to prepare these inks is still lacking. A universal one-pot strategy is now described; through simply heating a mixture of metal-organic precursors a wide range of TCO NC inks, which can be assembled into high-performance electrodes for use in ASP optoelectronics, were synthesized. This method can be used for various oxide NC inks with yields as high as 10 g. The formed NCs are of high crystallinity, uniform morphology, monodispersity, and high ink stability and feature effective doping. Therefore, the inks can be readily assembled into films with a surface roughness of 1.6 nm. Typically, a sheet resistance of 110 Ω sq-1 can be achieved with a transmittance of 88%, which is the best performance for TCO NC ink-based electrodes described to date. These electrodes can thus drive a polymer light-emitting diode (PLED) with a luminance of 2200 cdm-2 at 100 mA cm-2.

Original languageEnglish
Pages (from-to)462-466
Number of pages5
JournalAngewandte Chemie
Volume54
Issue number2
Early online date17 Nov 2014
DOIs
Publication statusPublished - 7 Jan 2015

Bibliographical note

Song, J, Kulinich, SA, Li, J, Liu, Y & Zeng, H 2015, 'A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices' Angewandte Chemie, vol 54, no. 2, pp. 462-466, which has been published in final form at http://dx.doi.org/10.1002/anie.201408621. This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201408621.

Keywords

  • nanocrystal inks
  • nanocrystals
  • nanostructures
  • solution processes
  • transparent conducting oxides

Fingerprint

Dive into the research topics of 'A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices'. Together they form a unique fingerprint.

Cite this