A Hybrid Siamese Neural Network for Natural Language Inference in Cyber-Physical Systems

Pin Ni, Yuming Li, Gangmin Li, Victor Chang

Research output: Contribution to journalArticlepeer-review


Cyber-Physical Systems (CPS), as a multi-dimensional complex system that connects the physical world and the cyber world, has a strong demand for processing large amounts of heterogeneous data. These tasks also include Natural Language Inference (NLI) tasks based on text from different sources. However, the current research on natural language processing in CPS does not involve exploration in this field. Therefore, this study proposes a Siamese Network structure that combines Stacked Residual Long Short-Term Memory (bidirectional) with the Attention mechanism and Capsule Network for the NLI module in CPS, which is used to infer the relationship between text/language data from different sources. This model is mainly used to implement NLI tasks and conduct a detailed evaluation in three main NLI benchmarks as the basic semantic understanding module in CPS. Comparative experiments prove that the proposed method achieves competitive performance, has a certain generalization ability, and can balance the performance and the number of trained parameters.

Original languageEnglish
Article number33
Number of pages25
JournalACM Transactions on Internet Technology
Issue number2
Publication statusPublished - 15 Mar 2021

Bibliographical note

© 2021 ACM

Funding Information:
This research was partly funded by VC Research (VCR 0000059). At the same time, this study is also partially supported by the AI University Research Centre (AI-URC) through the XJTLU Key Program Special Fund (KSF-P-02) and KSF-A-17. And this work has received support from the Suzhou Bureau of Sci. and Tech. and the Key Industrial Tech. Inno. program (No. SYG201840).


  • Cyber-physical systems
  • Natural language inference
  • Siamese neural networks


Dive into the research topics of 'A Hybrid Siamese Neural Network for Natural Language Inference in Cyber-Physical Systems'. Together they form a unique fingerprint.

Cite this