A miniature and intelligent Low-Power in situ wireless monitoring system for automotive wheel alignment

Xiaoli Tang, Yu Shi, Boyue Chen, Mark Longden, Rabiya Farooq, Harry Lees, Yu Jia*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Automotive wheel misalignment is the most significant cause of excessive wear on tires, which will severely affect the stability and safety of vehicle handling, and cause serious consequences for human health and the environment. In this study, an energy-efficient onboard wheel alignment wireless monitoring system (WAWMS) is developed to detect wheel misalignment in real time. To minimise power consumption, a dual wake-up strategy is proposed to wake the microcontroller by a real-time clock (RTC) and an accelerometer. Furthermore, an online self-calibration method of inertial measurement unit (IMU) sampling frequency is investigated to improve measurement accuracy. Eventually, real-world wheel misalignment tests were performed with the WAWMS. The error-correcting output codes based support vector machines (ECOC-SVM) method successfully classifies different wheel alignment conditions with an average accuracy of 93.2% using nine principal components (PCs) of 3-axis acceleration spectrum matrixes. It validates the effectiveness of the designed WAWMS on automotive wheel alignment monitoring.

Original languageEnglish
Article number112578
Number of pages13
JournalMeasurement: Journal of the International Measurement Confederation
Volume211
Early online date18 Feb 2023
DOIs
Publication statusPublished - 1 Apr 2023

Bibliographical note

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Keywords

  • Condition monitoring
  • Dual wake-up strategy
  • ECOC-SVM
  • Low power consumption
  • Wheel alignment
  • Wheel alignment wireless monitoring system

Fingerprint

Dive into the research topics of 'A miniature and intelligent Low-Power in situ wireless monitoring system for automotive wheel alignment'. Together they form a unique fingerprint.

Cite this