Abstract
A new, novel and unconventional encoding scheme called concurrent coding, has recently been demonstrated and shown to offer interesting features and benefits in comparison to conventional techniques, such as robustness against burst errors and improved efficiency of transmitted power. Free space optical communications can suffer particularly from issues of alignment which requires stable, fixed links to be established and beam wander which can interrupt communications. Concurrent coding has the potential to help ease these difficulties and enable mobile, flexible optical communications to be implemented through the use of a source encoding technique. This concept has been applied for the first time to optical communications where standard light emitting diodes (LEDs) have been used to transmit information encoded with concurrent coding. The technique successfully transmits and decodes data despite unpredictable interruptions to the transmission causing significant drop-outs to the detected signal. The technique also shows how it is possible to send a single block of data in isolation with no pre-synchronisation required between transmitter and receiver, and no specific synchronisation sequence appended to the transmission. Such systems are robust against interference -- intentional or otherwise -- as well as intermittent beam blockage.
Original language | English |
---|---|
Title of host publication | Advanced Free-Space Optical Communication Techniques and Applications III |
Publisher | SPIE |
Volume | 10437 |
DOIs | |
Publication status | Published - 6 Oct 2017 |
Bibliographical note
Copyright: 2017, Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.Event: SPIE Security + Defence, 2017, Warsaw, Poland.