A real-time predictive maintenance system for machine systems

Dheeraj Bansal*, David J. Evans, Barrie Jones

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review


    This paper describes a novel real-time predictive maintenance system for machine systems based upon a neural network approach. The ability of a neural network to learn non-linear mapping functions has been used for the prediction of machine system parameters using the motion current signature. This approach avoids the need for costly measurement of system parameters. Unlike many neural network based condition monitoring systems, this approach is validated in an off-line proof of concept procedure, using data from an experimental test rig providing conditions typical of those used on production machines. The experiment aims to classify five distinct motor loads using the motion current signature, irrespective of changing tuning parameters. Comparison of the predicted and actual loads shows good agreement. Generation of data covering all anticipated machine states for neural network training, using a production machine, is impractical, and the use of simulated data, generated by an experimentally validated simulation model, is effective. This paper demonstrates the underlying structure of the developed simulation model.

    Original languageEnglish
    Pages (from-to)759-766
    Number of pages8
    JournalInternational Journal of Machine Tools and Manufacture
    Issue number7-8
    Early online date12 Mar 2004
    Publication statusPublished - Jun 2004


    • machine parameter
    • motion current signature
    • neural network
    • predictive maintenance


    Dive into the research topics of 'A real-time predictive maintenance system for machine systems'. Together they form a unique fingerprint.

    Cite this