Absorption enhancement in hyperbolic metamaterials by means of magnetic plasma

Tatjana Gric*, Edik Rafailov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The main features of surface plasmon polaritons (SPPs) that can propagate in a metamaterial–magnetic plasma structure are studied from theoretical perspectives. Both the conventional and imaginary parts of the dispersion relation of SPPs are demonstrated considering transverse magnetic (TM) polarization. We examine and discuss the influence of the external magnetic field. The results demonstrate that this factor dramatically alters the nature of SPPs. It is concluded that the positions and propagation lengths of SPPs can be engineered. Moreover, we present an approach allowing for an absorption enhancement that is a pivotal factor in antenna design. A unified insight into the practical methods aiming to attain hyperbolic dispersion by means of nanostructured and nanowire metamaterials is demonstrated.
Original languageEnglish
Article number4720
JournalApplied Sciences
Volume11
Issue number11
DOIs
Publication statusPublished - 21 May 2021

Bibliographical note

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Funding: Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 713694 and from Engineering and Physical Sciences Research Council (EPSRC) (Grant No. EP/R024898/1). The work of E.U. Rafailov was partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2020-934 dated 17 November 2020).

Keywords

  • metamaterial
  • hyperbolic
  • absorption

Fingerprint

Dive into the research topics of 'Absorption enhancement in hyperbolic metamaterials by means of magnetic plasma'. Together they form a unique fingerprint.

Cite this