Abstract
The application of the agent-based simulation approach in the flow-shop production environment has recently gained popularity among researchers. The concept of agent and agent functions can help to automate a variety of difficult tasks and assist decision-making in flow-shop production. This is especially so in the large-scale Original Equipment Manufacturing (OEM) industry, which is associated with many uncertainties. Among these are uncertainties in customer demand requirements that create disruptions that impact production planning and scheduling, hence, making it difficult to satisfy demand in due time, in the right order delivery sequence, and in the right item quantities. It is however important to devise means of adapting to these inevitable disruptive problems by accommodating them while minimising the impact on production performance and customer satisfaction.
In this paper, an innovative embedded agent-based Production Disruption Inventory-Replenishment (PDIR) framework, which includes a novel adaptive heuristic algorithm and inventory replenishment strategy which is proposed to tackle the disruption problems. The capabilities and functionalities of agents are utilised to simulate the flow-shop production environment and aid learning and decision making. In practice, the proposed approach is implemented through a set of experiments conducted as a case study of an automobile parts facility for a real-life large-scale OEM. The results are presented in term of Key Performance Indicators (KPIs), such as the number of late/unsatisfied orders, to determine the effectiveness of the proposed approach. The results reveal a minimum number of late/unsatisfied orders, when compared with other approaches.
In this paper, an innovative embedded agent-based Production Disruption Inventory-Replenishment (PDIR) framework, which includes a novel adaptive heuristic algorithm and inventory replenishment strategy which is proposed to tackle the disruption problems. The capabilities and functionalities of agents are utilised to simulate the flow-shop production environment and aid learning and decision making. In practice, the proposed approach is implemented through a set of experiments conducted as a case study of an automobile parts facility for a real-life large-scale OEM. The results are presented in term of Key Performance Indicators (KPIs), such as the number of late/unsatisfied orders, to determine the effectiveness of the proposed approach. The results reveal a minimum number of late/unsatisfied orders, when compared with other approaches.
Original language | English |
---|---|
Pages (from-to) | 29-41 |
Number of pages | 13 |
Journal | Computers and Industrial Engineering |
Volume | 133 |
Early online date | 2 May 2019 |
DOIs | |
Publication status | Published - Jul 2019 |
Bibliographical note
© 2019, Elsevier. Licensed under the Creative Commons Attribution-NonCommercialNoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/Keywords
- Agent-based modelling
- Heuristic algorithm
- Production disruption
- OEM flow-shop