TY - JOUR
T1 - An Efficient Wideband Spectrum Sensing Algorithm for Unmanned Aerial Vehicle Communication Networks
AU - Xu, Wenbo
AU - Wang, Shu
AU - Yan, Shu
AU - He, Jianhua
N1 - © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2019/4
Y1 - 2019/4
N2 - With increasingly smaller size, more powerful sensing capabilities and higher level of autonomy, multiple unmanned aerial vehicles (UAVs) can form UAV networks to collaboratively complete missions more reliably, efficiently and economically. While UAV networks are promising for many applications, there are many outstanding issues to be resolved before large scale UAV networks are practically used. In this paper we study the application of cognitive radio technology for UAV communication networks, to provide high capacity and reliable communication with opportunistic and timely spectrum access. Compressive sensing is applied in the cognitive radio to boost the performance of spectrum sensing. However, the performance of existing compressive spectrum sensing schemes is constrained with non-strictly sparse spectrum. In addition, the reconstruction process applied in existing schemes has unnecessarily high computational complexity and low energy efficiency. We proposed a new compressive signal processing algorithm, called Iterative Compressive Filtering, to improve the UAV network communication performance. The key idea is using orthogonal projection as a bandstop filter in compressive domain. The components of primary users (PUs) in the recognized subchannels are adaptively eliminated in compressive domain, which can directly update the measurement for further detection of other active users. Experiment results showed increased efficiency of the proposed algorithm over existing compressive spectrum sensing algorithms. The proposed algorithm achieved higher detection probability in identifying the occupied subchannels under the condition of non-strictly sparse spectrum with large computational complexity reduction, which can provide strong support of reliable and timely communication for UAV networks.
AB - With increasingly smaller size, more powerful sensing capabilities and higher level of autonomy, multiple unmanned aerial vehicles (UAVs) can form UAV networks to collaboratively complete missions more reliably, efficiently and economically. While UAV networks are promising for many applications, there are many outstanding issues to be resolved before large scale UAV networks are practically used. In this paper we study the application of cognitive radio technology for UAV communication networks, to provide high capacity and reliable communication with opportunistic and timely spectrum access. Compressive sensing is applied in the cognitive radio to boost the performance of spectrum sensing. However, the performance of existing compressive spectrum sensing schemes is constrained with non-strictly sparse spectrum. In addition, the reconstruction process applied in existing schemes has unnecessarily high computational complexity and low energy efficiency. We proposed a new compressive signal processing algorithm, called Iterative Compressive Filtering, to improve the UAV network communication performance. The key idea is using orthogonal projection as a bandstop filter in compressive domain. The components of primary users (PUs) in the recognized subchannels are adaptively eliminated in compressive domain, which can directly update the measurement for further detection of other active users. Experiment results showed increased efficiency of the proposed algorithm over existing compressive spectrum sensing algorithms. The proposed algorithm achieved higher detection probability in identifying the occupied subchannels under the condition of non-strictly sparse spectrum with large computational complexity reduction, which can provide strong support of reliable and timely communication for UAV networks.
UR - https://ieeexplore.ieee.org/document/8542704/
U2 - 10.1109/JIOT.2018.2882532
DO - 10.1109/JIOT.2018.2882532
M3 - Article
SN - 2327-4662
VL - 6
SP - 1768
EP - 1780
JO - IEEE Internet of Things Journal
JF - IEEE Internet of Things Journal
IS - 2
ER -