TY - JOUR
T1 - Analysis of CO 2 emissions and techno-economic feasibility of an electric commercial vehicle
AU - Sodré, José Ricardo
AU - Falcão, Eduardo Aparecido Moreira
AU - Teixeira, Ana Carolina Rodrigues
N1 - © 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
PY - 2017/5/1
Y1 - 2017/5/1
N2 - In order to attain emissions reduction targets to improve air quality and reduce global warming, electric vehicles (EVs) arise as alternatives to conventional vehicles fueled by fossil fuels. In this context, this work presents a comparative study between an EV and its conventional version, a medium-duty, diesel engine powered vehicle, from road tests following a standard cycle in urban driving conditions. The performance parameters evaluated are EV electric energy consumption and carbon dioxide (CO2) emissions from electricity generation and, for the conventional vehicle, exhaust CO2 emissions and energy consumption calculated from fuel consumption and heating value. Five scenarios were built to conduct an economic viability study in terms of payback and net present value (NPV). Considering the conditions applied, the results from the environmental analysis showed that CO2 emissions from the EV was 4.6 times lower in comparison with the diesel vehicle. On the other hand, the economic analysis revealed that the viability of the EV is compromised, mainly due to the imported parts with unfavorably high exchange rates. In the best scenario and not considering revenue from commercial application, the calculated payback period of the EV is 13 years of operation.
AB - In order to attain emissions reduction targets to improve air quality and reduce global warming, electric vehicles (EVs) arise as alternatives to conventional vehicles fueled by fossil fuels. In this context, this work presents a comparative study between an EV and its conventional version, a medium-duty, diesel engine powered vehicle, from road tests following a standard cycle in urban driving conditions. The performance parameters evaluated are EV electric energy consumption and carbon dioxide (CO2) emissions from electricity generation and, for the conventional vehicle, exhaust CO2 emissions and energy consumption calculated from fuel consumption and heating value. Five scenarios were built to conduct an economic viability study in terms of payback and net present value (NPV). Considering the conditions applied, the results from the environmental analysis showed that CO2 emissions from the EV was 4.6 times lower in comparison with the diesel vehicle. On the other hand, the economic analysis revealed that the viability of the EV is compromised, mainly due to the imported parts with unfavorably high exchange rates. In the best scenario and not considering revenue from commercial application, the calculated payback period of the EV is 13 years of operation.
UR - https://linkinghub.elsevier.com/retrieve/pii/S0306261917301794
U2 - 10.1016/j.apenergy.2017.02.050
DO - 10.1016/j.apenergy.2017.02.050
M3 - Article
SN - 0306-2619
VL - 193
SP - 297
EP - 307
JO - Applied Energy
JF - Applied Energy
ER -