Abstract
The density and spatial patterns of neuritic plaques (NP) and cellular neurofibrillary tangles (cNFT) were studied in various brain regions in cases of Alzheimer’s disease. The objective was to test the hypothesis that NP develop from cNFT. cNFT were most abundant in the cornu Ammonis (CA) region of the hippocampus while NP were most abundant in gyri adjacent to the hippocampus. The density of NP in a brain region was positively correlated with the density of cNFT. In 83% of brain regions examined, NP occurred in clusters and in 51% the clusters exhibited a regular periodicity parallel to the tissue boundary. cNFT were clustered in 97% of brain regions, 61% exhibiting a regular periodicity. Mean cluster size of NP in a brain region was not significantly correlated with the cluster size of the cNFT. In most cortical regions, clusters of NP and cNFT were spatially unrelated to each other. However, coincident clusters of NP and cNFT were observed in the CA region of the hippocampus in 4/5 patients. It was concluded that the spatial patterns of the NP and cNFT clusters were not consistent with the hypothesis that the majority of NP evolved from cNFT.
Original language | English |
---|---|
Pages (from-to) | 69-71 |
Number of pages | 3 |
Journal | Alzheimer's Research |
Volume | 2 |
Publication status | Published - 1996 |
Keywords
- Alzheimer’s disease
- Gallyas stain
- Neuritic plaques
- Neurofibrillary tangles
- Spatial patterns