Abstract
The entorhinal cortex (EC) is a key brain area controlling both hippocampal input and output via neurones in layer II and layer V, respectively. It is also a pivotal area in the generation and propagation of epilepsies involving the temporal lobe. We have previously shown that within the network of the EC, neurones in layer V are subject to powerful synaptic excitation but weak inhibition, whereas the reverse is true in layer II. The deep layers are also highly susceptible to acutely provoked epileptogenesis. Considerable evidence now points to a role of spontaneous background synaptic activity in control of neuronal, and hence network, excitability. In the present article we describe results of studies where we have compared background release of the excitatory transmitter, glutamate, and the inhibitory transmitter, GABA, in the two layers, the role of this background release in the balance of excitability, and its control by presynaptic auto- and heteroreceptors on presynaptic terminals. © The Physiological Society 2004.
Original language | English |
---|---|
Pages (from-to) | 107-120 |
Number of pages | 14 |
Journal | Journal of Physiology |
Volume | 562 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2005 |
Event | Symposium on Structure and Function Correlates in Neurons and Networks held in Honour of Eberhard H Buhl - Leeds, United Kingdom Duration: 10 Sept 2004 → … |
Bibliographical note
Symposium on Structure and Function Correlates in Neurons and Networks held in Honour of Eberhard H Buhl, Leeds, ENGLAND, SEP 10, 2004Funding: NC3Rs [G1000059]; University of Bath; BBSRC