Blocking spatial navigation across environments that have a different shape

MG Buckley, AD Smith, Mark Haselgrove

Research output: Contribution to journalArticlepeer-review


According to the geometric module hypothesis, organisms encode a global representation of the space in which they navigate, and this representation is not prone to interference from other cues. A number of studies, however, have shown that both human and non-human animals can navigate on the basis of local geometric cues provided by the shape of an environment. According to the model of spatial learning proposed by Miller and Shettleworth (2007, 2008), geometric cues compete for associative strength in the same manner as non-geometric cues do. The experiments reported here were designed to test if humans learn about local geometric cues in a manner consistent with the Miller-Shettleworth model. Experiment 1 replicated previous findings that humans transfer navigational behavior, based on local geometric cues, from a rectangle-shaped environment to a kite-shaped environment, and vice versa. In Experiments 2 and 3, it was observed that learning about non-geometric cues blocked, and were blocked by, learning about local geometric cues. The reciprocal blocking observed is consistent with associative theories of spatial learning; however, it is difficult to explain the observed effects with theories of global-shape encoding in their current form.
Original languageEnglish
Pages (from-to)51-66
JournalJournal of Experimental Psychology: Animal Learning and Cognition
Issue number1
Early online date16 Nov 2015
Publication statusPublished - Jan 2016

Bibliographical note

This article has been published under the terms of the Creative Commons Attribution License (,which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright for this article is retained by the author(s). Author(s) grant(s) the American Psychological Association the exclusive right to publish the article and identify itself as the original publisher

Funding: This work contributed to Matthew G. Buckley’s doctorate degree, and was funded by an Economic and Social Research Council studentship(Award number: ES/I021108/1)


Dive into the research topics of 'Blocking spatial navigation across environments that have a different shape'. Together they form a unique fingerprint.

Cite this