C2H4 and C2H6 adsorption-induced structural variation of pillared-layer CPL-2 MOF: A combined experimental and Monte Carlo simulation study

Huan Xiang, Joseph H. Carter, Chiu C. Tang, Claire A. Murray, Sihai Yang, Xiaolei Fan, Flor R. Siperstein

Research output: Contribution to journalArticlepeer-review

Abstract

Coordination pillared-layer metal-organic frameworks (CPL-MOFs), such as CPL-2, are interesting versatile and porous materials with the potential for gas adsorption and separation. CPL-2 shows the unusual and gradual linker rotation upon the adsorption of ethylene (C2H4) and ethane (C2H6), leading to a fully reversible adsorption isotherm specifically under the conditions studied. Grand canonical Monte Carlo (GCMC) simulations showed that it is impossible to accommodate the experimentally observed loadings of C2H4 and C2H6 in CPL-2 using the crystallographic structure reported in the literature. According to the simulation findings, the pore expansion might be initiated by the clockwise 4,4'-bipyridine (bpy) pillar linker rotation. The pillar rotation leads to the enlarged pore volume, rendering additional adsorption sites, which are not present in the pristine structure. In situ synchrotron PXRD experiments for C2H4 and C2H6 adsorption on CPL-2 confirmed the occurrence of pore expansion in CPL-2 MOF. The combined experimental and simulation study shows for the first time that the linker rotation in CPL-2 can result in a adsorption isotherm without hysteresis. This work developed a real insight into the nature of pillared-layer MOFs, and the revealed structural changes could be potentially exploited to enhance alkene and alkane working capacities of such microporous materials.
Original languageEnglish
Article number115566
JournalChemical Engineering Science
Volume218
Early online date10 Feb 2020
DOIs
Publication statusPublished - 8 Jun 2020

Bibliographical note

Funding: HX gratefully acknowledges The University of Manchester President’s Doctoral Scholar Award and the China Scholarship Council (file no. 201606150068) for supporting her PhD research.

Keywords

  • CPL-2 MOF
  • C2H4
  • Adsorption
  • C2H6
  • Linker rotation
  • Pore expansion

Fingerprint

Dive into the research topics of 'C2H4 and C2H6 adsorption-induced structural variation of pillared-layer CPL-2 MOF: A combined experimental and Monte Carlo simulation study'. Together they form a unique fingerprint.

Cite this