Abstract
Supported metal catalysts play a central role in the modern chemical industry but often exhibit poor on-stream stability. The strong metal–support interaction (SMSI) offers a route to control the structural properties of supported metals and, hence, their reactivity and stability. Conventional wisdom holds that supported Au cannot manifest a classical SMSI, which is characterized by reversible metal encapsulation by the support upon high-temperature redox
treatments. We demonstrate a classical SMSI for Au/TiO2, evidenced by suppression of CO adsorption, electron transfer from TiO2 to Au nanoparticles, and gold encapsulation by a TiOx overlayer following high-temperature reduction (reversed by subsequent oxidation), akin to that observed for titania-supported platinum group metals. In the SMSI state, Au/TiO2 exhibits markedly improved stability toward CO oxidation. The SMSI extends to Au supported over other reducible oxides (Fe3O4 and CeO2) and other group IB metals (Cu and Ag) over titania. This discovery highlights the general nature of the classical SMSI and unlocks the development of thermochemically stable IB metal catalysts.
treatments. We demonstrate a classical SMSI for Au/TiO2, evidenced by suppression of CO adsorption, electron transfer from TiO2 to Au nanoparticles, and gold encapsulation by a TiOx overlayer following high-temperature reduction (reversed by subsequent oxidation), akin to that observed for titania-supported platinum group metals. In the SMSI state, Au/TiO2 exhibits markedly improved stability toward CO oxidation. The SMSI extends to Au supported over other reducible oxides (Fe3O4 and CeO2) and other group IB metals (Cu and Ag) over titania. This discovery highlights the general nature of the classical SMSI and unlocks the development of thermochemically stable IB metal catalysts.
Original language | English |
---|---|
Article number | e1700231 |
Journal | Science Advances |
Volume | 3 |
Issue number | 10 |
DOIs | |
Publication status | Published - 13 Oct 2017 |
Bibliographical note
Copyright © 2017 The Authors, some rights reserved; exclusive licenseeAmerican Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Funding: This work was supported by National Key R&D Program of China (2016YFA0202801 and 2016YFA0202804), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020100), the National Natural Science Foundation of China (21776270, 21476232, and 21303184), and the Department of Science and Technology of Liaoning Province (2015020086-101). B.Z. acknowledges the financial support provided by the National Natural Science Foundation of China (91545119), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) (2015152), and the Strategic Priority Research Program of the CAS (XDA09030103).