Abstract
We report that the internal quantum efficiency for hydrogen generation in spherical, Pt-decorated CdS nanocrystals can be tuned by quantum confinement, resulting in higher efficiencies for smaller than for larger nanocrystals (17.3% for 2.8 nm and 11.4% for 4.6 nm diameter nanocrystals). We attribute this to a larger driving force for electron and hole transfer in the smaller nanocrystals. The larger internal quantum efficiency in smaller nanocrystals enables a novel colloidal dual-band gap cell utilising differently sized nanocrystals and showing larger external quantum efficiencies than cells with only one size of nanocrystals (9.4% for 2.8 nm particles only and 14.7% for 2.8 nm and 4.6 nm nanocrystals). This represents a proof-of-principle for future colloidal tandem cell.
Original language | English |
---|---|
Pages (from-to) | 16606-16610 |
Number of pages | 5 |
Journal | Nanoscale |
Volume | 7 |
Issue number | 40 |
Early online date | 19 Sept 2015 |
DOIs | |
Publication status | Published - 28 Oct 2015 |