Abstract
We demonstrate a phosphor free, dichromatic GaN-based monolithic white LED with vertically stacked green and blue emitting multiple quantum wells. The optimal thickness of GaN barrier layer between green and blue quantum wells used is 8 nm. This device can be tuned over a wide range of correlated color temperature (CCT) to achieve warm white (CCT = 3600 K) to cool white (CCT = 13,000 K) emission by current modulation from 2.3 A/cm2 to 12.9 A/cm2. It is also demonstrated for the first time that a color rendering index (CRI) as high as 67 can be achieved with such a dichromatic source. The observed CCT and CRI tunability is associated with the spectral power evolution due to the pumping-induced carrier redistribution.
Original language | English |
---|---|
Article number | 1158 |
Journal | Applied Sciences (Switzerland) |
Volume | 8 |
Issue number | 7 |
DOIs | |
Publication status | Published - 17 Jul 2018 |
Bibliographical note
©2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open accessarticle distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Keywords
- Color rendering
- Colorimetry
- High CRI
- Light-emitting diodes
- Monolithic LED