Dichoptic vision in the absence of attention: neither fusion nor rivalry

Cheng Qian, Sam Ling, Jan W. Brascamp

Research output: Contribution to journalArticlepeer-review

Abstract

When the two eyes’ processing streams meet in visual cortex, two things can happen: sufficiently similar monocular inputs are combined into a fused representation, whereas markedly different inputs engage in rivalry. Interestingly, the emergence of rivalry appears to require attention. Withdrawing attention causes the alternating monocular dominance that characterizes rivalry to cease, apparently allowing both monocular signals to be processed simultaneously. What happens to these signals in this case, however, remains something of a mystery; are they fused into an integrated representation? In a set of experiments, we show this not to be the case: visual aftereffects are consistent with the simultaneous yet separate presence of two segregated monocular representations, rather than a joint representation. These results provide evidence that dichoptic vision without attention prompts a third and previously unknown mode, where both eyes’ inputs receive equal processing, but escape interocular fusion.
Original languageEnglish
Article number12904
JournalScientific Reports
Volume9
Issue number1
DOIs
Publication statusPublished - 9 Sept 2019

Bibliographical note

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Fingerprint

Dive into the research topics of 'Dichoptic vision in the absence of attention: neither fusion nor rivalry'. Together they form a unique fingerprint.

Cite this