Abstract
Introduction: Explanatory models of behavioral insomnia typically draw on operant learning theory with behavioral techniques focused on altering parent-child interactions to improve sleep. However, there are no data describing parent-child interactions overnight beyond parent report. In this study we used radio frequency identification technology to quantify parent-child proximity overnight in two groups at elevated risk of behavioral insomnia, Angelman syndrome (AS) and Smith-Magenis syndrome (SMS). Materials and Methods: Nineteen children aged 4–15 years (8 with AS, 11 with SMS) participated in a week-long at-home assessment of sleep and overnight parent-child proximity. Sleep parameters were recorded using the Philips Actiwatch 2 and proximity data were recorded using custom-built radio frequency identification watches. Results: Three patterns of proximity data between parent-child dyads overnight were evident: “checking” (six with AS, five with SMS), “co-sleeping” (four with SMS) and those who had “no proximity” overnight (two with AS, two with SMS). In the AS group, 25.45% of actigraphy-defined wakes resulted in a parent-child interaction. In the SMS group, 39.34% of wakes resulted in a parent-child interaction. Children who interacted with their parents when settling to sleep were not significantly more likely to interact at waking. Discussion: The novel application of radio frequency identification technology is a feasible method for studying overnight parent-child proximity. Profiles of proximity between participants that are not closely aligned with operant models of behavioral insomnia were evident. These results have significant implications for the etiology of poor sleep and the application of behavioral sleep interventions.
Original language | English |
---|---|
Pages (from-to) | 254-272 |
Number of pages | 19 |
Journal | Behavioral Sleep Medicine |
Volume | 21 |
Issue number | 3 |
Early online date | 7 Jul 2022 |
DOIs | |
Publication status | Published - Mar 2023 |
Bibliographical note
Publisher Copyright:© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
Funding Information:
This work was supported by Cerebra [PhD Fellowship].