Discrete light bullets in passively mode-locked semiconductor lasers

Thomas G. Seidel, Auro M. Perego, Julien Javaloyes, Svetlana V. Gurevich*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


In this paper, we analyze the formation and dynamical properties of discrete light bullets in an array of passively mode-locked lasers coupled
via evanescent fields in a ring geometry. Using a generic model based upon a system of nearest-neighbor coupled Haus master equations,
we show numerically the existence of discrete light bullets for different coupling strengths. In order to reduce the complexity of the analysis,
we approximate the full problem by a reduced set of discrete equations governing the dynamics of the transverse profile of the discrete
light bullets. This effective theory allows us to perform a detailed bifurcation analysis via path-continuation methods. In particular, we show
the existence of multistable branches of discrete localized states, corresponding to different number of active elements in the array. These
branches are either independent of each other or are organized into a snaking bifurcation diagram where the width of the discrete localized
states grows via a process of successive increase and decrease of the gain. Mechanisms are revealed by which the snaking branches can
be created and destroyed as a second parameter, e.g., the linewidth enhancement factor or the coupling strength is varied. For increasing
couplings, the existence of moving bright and dark discrete localized states is also demonstrated.
Original languageEnglish
Article number063102
Issue number6
Publication statusPublished - 1 Jun 2020

Bibliographical note

Published under license by AIP Publishing


Dive into the research topics of 'Discrete light bullets in passively mode-locked semiconductor lasers'. Together they form a unique fingerprint.

Cite this