Dual wavelength retinal vessel oximetry – influence of fundus pigmentation

Katrin Hirsch*, Robert P. Cubbidge, Rebekka Heitmar*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Clinical methods examining oxygenation parameters in humans have been used in many different care settings, but concerns have been raised regarding their clinical utility when assessing people with darker skin pigmentation. While saturation values can be crucial in emergency medicine, they are equally valuable in assessing disease mechanisms and monitoring change in disease progression. Retinal pigmentation varies across individuals and hence, can impact on retinal oxygen parameters. The objective of this study was to quantify and eliminate the impact of retinal pigmentation on retinal vessel oxygen saturation parameters measured in the superficial retinal arterioles and venules. Methods: 105 healthy individuals of varying skin colour, iris colour and heritage were included. Following a full eye exam to exclude any ocular abnormality, all participants underwent intraocular pressure, systemic blood pressure measurements and dilated dual wavelength retinal photography. Rotation matrices were employed to minimise the dependency of retinal pigmentation on arterial and venous oxygen saturation measurements determined in a concentric measurement annulus. Results: Retinal oxygen saturation in venules showed a linear correlation with retinal pigmentation (y = 0.34 × x + 38.598), whereas arterial saturation followed a polynomial pattern (y = 0.0089 × x2 + 0.7499 × x + 85.073). Both arterial and venous saturation values were corrected using local fundus pigmentation. Pre-correction retinal arterial and venous oxygen saturation were 89.0% (±13.1) and 43.7% (±11.5), respectively, and post- correction values were 94.8% (±8.7) for arteries and 56.3% (±7.0) veins. Conclusions: When assessing multi-ethnic cohorts, it is important to consider the impact of pigmentation on imaging parameters and to account for it prior to clinical interpretation.
Original languageEnglish
Pages (from-to)2246-2251
Number of pages6
JournalEye
Volume37
Issue number11
Early online date2 Dec 2022
DOIs
Publication statusPublished - Aug 2023

Bibliographical note

Copyright © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/

Fingerprint

Dive into the research topics of 'Dual wavelength retinal vessel oximetry – influence of fundus pigmentation'. Together they form a unique fingerprint.

Cite this