Abstract
Electromagnetic design of a 1.12-MW, 18 000-r/min high-speed permanent-magnet motor (HSPMM) is carried out based on the analysis of pole number, stator slot number, rotor outer diameter, air-gap length, permanent magnet material, thickness, and pole arc. The no-load and full-load performance of the HSPMM is investigated in this paper by using 2-D finite element method (FEM). In addition, the power losses in the HSPMM including core loss, winding loss, rotor eddy current loss, and air friction loss are predicted. Based on the analysis, a prototype motor is manufactured and experimentally tested to verify the machine design.
Original language | English |
---|---|
Pages (from-to) | 132-140 |
Number of pages | 9 |
Journal | IEEE Transactions on Energy Conversion |
Volume | 31 |
Issue number | 1 |
Early online date | 28 Oct 2015 |
DOIs | |
Publication status | Published - Mar 2016 |
Bibliographical note
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Keywords
- electromagnetic design
- finite element method
- high speed
- loss calculation
- permanent-magnet motors