Abstract
The development of excessively tilted fiber gratings (Ex-TFGs) provides a new type of sensing device with high refractive index (RI) sensitivity, low thermal crosstalk and vector sensing property. Due to the asymmetric grating structure of Ex-TFG, the light in the core is coupled into high order forward-propagating cladding modes and split into two orthogonal polarization states, resulting in dual-peak resonances in the transmission spectrum. The Ex-TFG also exhibits a non-circularly symmetrical near field distribution, which endows an exceptional orientation sensing capability. Benefitting from the unique mode coupling behavior, Ex-TFGs have been studied and developed for many different sensing applications, such as polarization dependent torsion and loading sensors, vector accelerometer and magnetometer, and a variety of low thermal crosstalk bio/chemical sensors. This paper will review the recent study and development of Ex-TFGs in terms of mode coupling mechanism, fabrication method, transmission and sensor characteristics and the novel applications in sensing areas.
Original language | English |
---|---|
Article number | 9337919 |
Pages (from-to) | 3761-3770 |
Number of pages | 10 |
Journal | Journal of Lightwave Technology |
Volume | 39 |
Issue number | 12 |
Early online date | 28 Jan 2021 |
DOIs | |
Publication status | Published - 15 Jun 2021 |
Bibliographical note
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Keywords
- Optical fiber grating
- biosensing
- mode coupling in excessively asymmetric structure
- orientation sensing
- refractive index sensing