Factors determining lobe growth in foliose lichen thalli

Richard A. Armstrong

Research output: Contribution to journalArticlepeer-review


This study investigates the relative importance of climate, lobe morphology and lobe interactions in determining the radial growth of individual lobes in foliose lichen thalli. The radial growth of 75 lobes from thalli of Parmelia conspersa (Ehrh. Ex Ach.) Ach. and Parmelia glabratula ssp. fuliginosa (Fr. ex Duby) Laund. was measured over 22 successive months in relation to climatic factors. Individual lobes showed a fluctuating pattern of radial growth with alternating periods of fast and slow growth. In 17/75 (23%) of lobes studied, monthly radial growth was correlated with a climatic factor, usually total rainfall or the frequency of sunshine hours. In addition, the radial growth of 54 lobes of P. conspersa was measured over four months in relation to lobe morphology and the radial growth and morphology of adjacent lobes. Radial growth was correlated with lobe length and with the radial growth of adjacent lobes. In addition, the pattern of lobe branching appeared to be related to lobe width and to a lesser extent to lobe length and the width of adjacent lobes. The radial growth in one year of exceptionally long lobes which had grown beyond the thallus margin was similar to more normal lobes, but experimentally bisected lobes had significantly reduced radial growth compared with control lobes. These results suggested that the fluctuating pattern of radial growth in individual lobes may be determined by climate and the pattern of lobe branching. In addition, the pattern of lobe branching was related to lobe width and may be influenced by adjacent lobes.
Original languageEnglish
Pages (from-to)675-679
Number of pages5
JournalNew Phytologist
Issue number4
Publication statusPublished - Aug 1993


  • lichen
  • lobe growth
  • climate
  • lobe morphology
  • lobe interactions


Dive into the research topics of 'Factors determining lobe growth in foliose lichen thalli'. Together they form a unique fingerprint.

Cite this