Abstract
With increasing growth of electricity consumption in developed and developing countries, the necessity of constructing and developing of power plants is inevitable. There are two main resources for electricity generation includes fossil and renewable energies which have some different characteristics such as manufacturing technology, environmental issues, accessibility and etc. In developing plans, it is important to consider and address the policy makers’ indicators such as environmental, social, economic and technical criteria. In this paper, an integrated multi response Taguchi-neural network-fuzzy best-worst method (FBWM) -TOPSIS approach is applied to find an optimal level of five different power plants including: gas, steam, combined cycle, wind and hydroelectric. Taguchi method is used to design combinations and calculate some of the signal to noise (S/N) ratios. Then, neural network is applied to estimate the rest of S/N ratios. Finally, FBWM and TOPSIS methods are used for weighing sub-indicators and selecting the best combination, respectively. To illustrate the usefulness of the proposed approach, a case study on the development of power plants in Iran is considered and the results are discussed. According to the results, in general, small size power plants for fossil resources are preferable. In contrast, medium and larger size power plants for renewable resources are preferable.
Original language | English |
---|---|
Pages (from-to) | 210-223 |
Journal | Journal of Cleaner Production |
Volume | 203 |
Early online date | 23 Aug 2018 |
DOIs | |
Publication status | Published - 1 Dec 2018 |
Bibliographical note
© 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/Keywords
- Power plants; Eco-efficiency; Taguchi method; Neural network; Fuzzy best worst method; TOPSIS