Fully-Autonomous, Vision-based Traffic Signal Control: from Simulation to Reality

Deepeka Garg*, Maria Chli, George Vogiatzis

*Corresponding author for this work

Research output: Chapter in Book/Published conference outputConference publication


Ineffective traffic signal control is one of the major causes of congestion in urban road networks. Dynamically changing traffic conditions and live traffic state estimation are fundamental challenges that limit the ability of the existing signal infrastructure in rendering individualized signal control in real-time. We use deep reinforcement learning (DRL) to address these challenges. Due to economic and safety constraints associated training such agents in the real world, a practical approach is to do so in simulation before deployment. Domain randomisation is an effective technique for bridging the reality gap and ensuring effective transfer of simulation-trained agents to the real world. In this paper, we develop a fully-autonomous, vision-based DRL agent that achieve adaptive signal control in the face of complex, imprecise, and dynamic traffic environments. Our agent uses live visual data (i.e. a stream of real-time RGB footage) from an intersection to extensively perceive and subsequently act upon the traffic environment. Employing domain randomisation, we examine our agent’s generalisation capabilities under varying traffic conditions in both the simulation and the real-world environments. In a diverse validation set independent of training data, our traffic control agent reliably adapted to novel traffic situations and demonstrated a positive transfer to previously unseen real intersections despite being trained entirely in simulation.
Original languageEnglish
Title of host publicationProceedings of the 21st International Conference on Autonomous Agents and Multi-agent Systems (AAMAS 2022)
Number of pages9
ISBN (Electronic)9781713854333
Publication statusPublished - 9 May 2022
Event21st International Conference on Autonomous Agents and Multiagent Systems - Auckland, New Zealand
Duration: 9 May 202213 May 2022

Publication series

NameProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
ISSN (Print)1548-8403
ISSN (Electronic)1558-2914


Conference21st International Conference on Autonomous Agents and Multiagent Systems
Abbreviated titleAAMAS 2022
Country/TerritoryNew Zealand
Internet address

Bibliographical note

(c) 2022, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.


  • Intelligent Transportation Systems
  • Autonomous Signal Control
  • Deep Reinforcement Learning


Dive into the research topics of 'Fully-Autonomous, Vision-based Traffic Signal Control: from Simulation to Reality'. Together they form a unique fingerprint.

Cite this