Fuzzy approaches for colour image palette selection

Gerald Schaefer, Huiyu Zhou

    Research output: Chapter in Book/Published conference outputConference publication

    Abstract

    Colour quantisation algorithms are used to display true colour images using a limited palette of distinct colours. The choice of a good colour palette is crucial as it directly determines the quality of the resulting image. Colour quantisation can also be seen as a clustering problem where the task is to identify those clusters that best represent the colours in an image. In this paper we investigate the performance of various fuzzy c-means clustering algorithms for colour quantisation of images. In particular, we use conventional fuzzy c-means as well as some more efficient variants thereof, namely fast fuzzy c-means with random sampling, fast generalised fuzzy c-means, and anisotropic mean shift based fuzzy c-means algorithm. Experimental results show that fuzzy c-means performs significantly better than other, purpose built colour quantisation algorithms, and also confirm that the fast fuzzy clustering algorithms provide quantisation results similar to the full conventional fuzzy c-means approach.

    Original languageEnglish
    Title of host publicationAdvances in Intelligent and Soft Computing
    PublisherSpringer
    Pages473-482
    Number of pages10
    Volume58
    ISBN (Print)9783540896180
    DOIs
    Publication statusPublished - 1 Jan 2009

    Publication series

    NameAdvances in Intelligent and Soft Computing
    Volume58
    ISSN (Print)18675662

    Fingerprint

    Dive into the research topics of 'Fuzzy approaches for colour image palette selection'. Together they form a unique fingerprint.

    Cite this