Hierarchically ordered nanoporous Pd/SBA-15 catalyst for the aerobic selective oxidation of sterically challenging allylic alcohols

Christopher M.A. Parlett, Pooja Keshwalla, Stephen G. Wainwright, D.W. Bruce, Nicole S. Hondow, Karen Wilson, Adam F. Lee

Research output: Contribution to journalArticlepeer-review

Abstract

The utility of a hierarchically ordered nanoporous SBA-15 architecture, comprising 270 nm macropores and 5 nm mesopores (MM-SBA-15), for the catalytic aerobic selective oxidation of sterically challenging allylic alcohols is shown. Detailed bulk and surface characterization reveals that incorporation of complementary macropores into mesoporous SBA-15 enhances the dispersion of sub 2 nm Pd nanoparticles and thus their degree of surface oxidation. Kinetic profiling reveals a relationship between nanoparticle dispersion and oxidation rate, identifying surface PdO as the catalytically active phase. Hierarchical nanoporous Pd/MM-SBA-15 outperforms mesoporous analogues in allylic alcohol selective oxidation by (i) stabilizing PdO nanoparticles and (ii) dramatically improving in-pore diffusion and access to active sites by sesquiterpenoid substrates such as farnesol and phytol. © 2013 American Chemical Society.
Original languageEnglish
Pages (from-to)2122-2129
Number of pages8
JournalACS Catalysis
Volume3
Issue number9
Early online date30 Jul 2013
DOIs
Publication statusPublished - 6 Sept 2013

Bibliographical note

We thank the EPSRC (EP/F009488/1, EP/G007594/2 and EP/E046754/1) for a Leadership Fellowship (A.F.L.) and studentship support (C.M.A.P. and S.G.W.), and the Royal Society for an Industry Fellowship (K.W.). TEM was provided through the Leeds EPSRC Nanoscience and Nanotechnology Research Equipment Facility (LENNF) (EP/F056311/1).

Additional support and catalyst characterization, and selox reaction data. This material is available free of charge via the Internet at http://pubs.acs.org.

Keywords

  • palladium
  • SBA-15
  • mesoporous
  • macroporous
  • hierarchical
  • alcohol
  • selective oxidation

Fingerprint

Dive into the research topics of 'Hierarchically ordered nanoporous Pd/SBA-15 catalyst for the aerobic selective oxidation of sterically challenging allylic alcohols'. Together they form a unique fingerprint.

Cite this