Abstract
Efforts are being made to improve crystalline properties of the skeletons of mesoporous TiO2. On the basis of the unique crystal structures and versatile phase evolution of K2Ti2O5, we obtain mesoporous TiO2(B) nanofibers (M-NFs) with highly crystalline and high-energy facets exposed skeletons via a cheap and scalable route. Verified by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and N2 adsorption, these special structures come from layered structure of K2Ti2O 5 and subsequent interlayer splitting and exfoliating and intralayer topotactic transformation. Because of their well-organized frameworks and high surface area, M-NFs exhibit efficient photogenerated charge transportation and hydrogen production, showing better charge mobility along one-dimensional and highly crystalline skeletons than irregularly shaped polycrystalline counterpart and more accessible reactive sites due to larger surface area than single crystal nonporous counterpart.
Original language | English |
---|---|
Pages (from-to) | 3049-3055 |
Number of pages | 7 |
Journal | Journal of Physical Chemistry C |
Volume | 118 |
Issue number | 6 |
Early online date | 29 Jan 2014 |
DOIs | |
Publication status | Published - 13 Feb 2014 |