Abstract
A novel continuous flow process for selective hydrogenation of α, β-unsaturated aldehyde (cinnamaldehyde, CAL) to the unsaturated alcohol (cinnamyl alcohol, COL) has been reported in a tube reactor coated with a Pt/SiO2 catalyst. A 90% selectivity towards the unsaturated alcohol was obtained at the aldehyde conversion of 98.8%. This is a six-fold improvement in the selectivity compared to a batch process where acetals were the main reaction products. The increased selectivity in the tube reactor was caused by the suppression of acid sites responsible for the acetal formation after a short period on stream in the continuous process. In a fixed bed reactor, it had a similar acetal suppression phenomenon but showed lower product selectivity of about 47–72% due to mass transfer limitations. A minor change in selectivity and conversion caused by product inhibition was observed during the 110 h on stream with a turnover number (TON) reaching 3000 and an alcohol production throughput of 0.36 kg gPt −1 day−1 in the single tube reactor. The catalysts performance after eight reaction cycles was fully restored by calcination in air at 400◦C. The tube reactors provide an opportunity for process intensification by increasing the reaction rates by a factor of 2.5 at the reaction temperature of 150◦C compared to 90◦C with no detrimental effects on catalyst stability or product selectivity.
Original language | English |
---|---|
Article number | 58 |
Journal | Catalysts |
Volume | 8 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2 Feb 2018 |
Bibliographical note
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).Keywords
- Alcohol
- Catalyst-coated
- Flow chemistry
- Hydrogenation
- Platinum
- Selectivity
- Stability
- Tube reactor
- Unsaturated aldehyde