Abstract
BACKGROUND: The importance of cytotoxic T lymphocyte antigen-4 (CTLA-4) in immune regulation is unquestioned, yet a precise understanding of which cells express it, and how it mediates immune inhibitory function, is lacking. Regulatory T cells are known to constitutively express CTLA-4 intracellularly, whereas conventional T cells require activation to trigger CTLA-4 expression. However comparative analysis of CTLA-4 trafficking in regulatory and conventional subsets has not been performed.
METHODS: Here we assess CTLA-4 expression in antigen-specific conventional and regulatory cells responding to immunizing antigen in vivo and analyse the membrane trafficking of CTLA-4 using an in vitro recycling assay. We assess the expression of CTLA-4 on Treg infiltrating the pancreas in the DO11×RIP-mOVA diabetes model and the role of CTLA-4 in Treg function.
RESULTS: Regulatory T cells show an enhanced capacity to traffic CTLA-4 following stimulation compared with conventional T cells. Treg infiltrating the pancreas in DO11×RIP-mOVA mice show high expression of CTLA-4. Furthermore CTLA-4-deficient Treg fail to control diabetes in an adoptive transfer model of diabetes, even in situations where they outnumber the disease-inducing conventional T cells.
CONCLUSIONS: These data show that not only do regulatory T cells express higher levels of intracellular CTLA-4 than conventional T cells, but they also show an increased capacity to traffic CTLA-4 to the cell surface following stimulation. CTLA-4 is strongly upregulated in regulatory T cells infiltrating the target tissue in a mouse model of type 1 diabetes and expression of this protein is critical for effective regulation.
Original language | English |
---|---|
Pages (from-to) | 946-950 |
Number of pages | 5 |
Journal | Diabetes/Metabolism Research and Reviews |
Volume | 27 |
Issue number | 8 |
DOIs | |
Publication status | Published - Nov 2011 |
Keywords
- adoptive transfer
- diabetes
- CTLA-4 antigen
- type 1 diabetes mellitus
- animal disease models
- lymphocyte activation
- CTLA-4
- protein transport
- T-lymphocytes
- regulatory T-lymphocytes
- up-regulation
- Treg
- autoimmunity
- T cells
- immune regulation