Abstract
Epitope prediction is becoming a key tool for vaccine discovery. Prospective analysis of bacterial and viral genomes can identify antigenic epitopes encoded within individual genes that may act as effective vaccines against specific pathogens. Since B-cell epitope prediction remains unreliable, we concentrate on T-cell epitopes, peptides which bind with high affinity to Major Histacompatibility Complexes (MHC). In this report, we evaluate the veracity of identified T-cell epitope ensembles, as generated by a cascade of predictive algorithms (SignalP, Vaxijen, MHCPred, IDEB, EpiJen), as a candidate vaccine against the model pathogen uropathogenic gram negative bacteria Escherichia coli (E-coli) strain 536 (O6:K15:H31). An immunoinformatic approach was used to identify 23 epitopes within the E-coli proteome. These epitopes constitute the most promiscuous antigenic sequences that bind across more than one HLA allele with high affinity (IC50 <50nM). The reliability of software programmes used, polymorphic nature of genes encoding MHC and what this means for population coverage of this potential vaccine are discussed.
Original language | English |
---|---|
Pages (from-to) | 272-275 |
Number of pages | 4 |
Journal | Bioinformation |
Volume | 8 |
Issue number | 6 |
DOIs | |
Publication status | Published - 31 Mar 2012 |