TY - JOUR
T1 - Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury
AU - Mead, Ben
AU - Logan, Ann
AU - Berry, Martin
AU - Leadbeater, Wendy
AU - Scheven, Ben A.
N1 - Creative Commons Attribution Non-Commercial No Derivatives License
PY - 2013/10/22
Y1 - 2013/10/22
N2 - Purpose. To investigate the potential therapeutic benefit of intravitreally implanted dental pulp stem cells (DPSCs) on axotomized adult rat retinal ganglion cells (RGCs) using in vitro and in vivo neural injury models. Methods. Conditioned media collected from cultured rat DPSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were assayed for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) secretion using ELISA. DPSCs or BMSCs were cocultured with retinal cells, with or without Fc-TrK inhibitors, in a Transwell system, and the number of surviving βIII-tubulin+ retinal cells and length/number of βIII-tubulin+ neurites were quantified. For the in vivo study, DPSCs or BMSCs were transplanted into the vitreous body of the eye after a surgically induced optic nerve crush injury. At 7, 14, and 21 days postlesion (dpl), optical coherence tomography (OCT) was used to measure the retinal nerve fiber layer thickness as a measure of axonal atrophy. At 21 dpl, numbers of Brn-3a+ RGCs in parasagittal retinal sections and growth-associated protein-43+ axons in longitudinal optic nerve sections were quantified as measures of RGC survival and axon regeneration, respectively. Results. Both DPSCs and BMSCs secreted NGF, BDNF, and NT-3, with DPSCs secreting significantly higher titers of NGF and BDNF than BMSCs. DPSCs, and to a lesser extent BMSCs, promoted statistically significant survival and neuritogenesis/axogenesis of βIII-tubulin+ retinal cells in vitro and in vivo where the effects were abolished after TrK receptor blockade. Conclusions. Intravitreal transplants of DPSCs promoted significant neurotrophin-mediated RGC survival and axon regeneration after optic nerve injury.
AB - Purpose. To investigate the potential therapeutic benefit of intravitreally implanted dental pulp stem cells (DPSCs) on axotomized adult rat retinal ganglion cells (RGCs) using in vitro and in vivo neural injury models. Methods. Conditioned media collected from cultured rat DPSCs and bone marrow-derived mesenchymal stem cells (BMSCs) were assayed for nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) secretion using ELISA. DPSCs or BMSCs were cocultured with retinal cells, with or without Fc-TrK inhibitors, in a Transwell system, and the number of surviving βIII-tubulin+ retinal cells and length/number of βIII-tubulin+ neurites were quantified. For the in vivo study, DPSCs or BMSCs were transplanted into the vitreous body of the eye after a surgically induced optic nerve crush injury. At 7, 14, and 21 days postlesion (dpl), optical coherence tomography (OCT) was used to measure the retinal nerve fiber layer thickness as a measure of axonal atrophy. At 21 dpl, numbers of Brn-3a+ RGCs in parasagittal retinal sections and growth-associated protein-43+ axons in longitudinal optic nerve sections were quantified as measures of RGC survival and axon regeneration, respectively. Results. Both DPSCs and BMSCs secreted NGF, BDNF, and NT-3, with DPSCs secreting significantly higher titers of NGF and BDNF than BMSCs. DPSCs, and to a lesser extent BMSCs, promoted statistically significant survival and neuritogenesis/axogenesis of βIII-tubulin+ retinal cells in vitro and in vivo where the effects were abolished after TrK receptor blockade. Conclusions. Intravitreal transplants of DPSCs promoted significant neurotrophin-mediated RGC survival and axon regeneration after optic nerve injury.
KW - Axon regeneration
KW - Cell transplantation
KW - Dental pulp stem cells
KW - Mesenchymal stem cells
KW - Neuroprotection
UR - http://www.scopus.com/inward/record.url?scp=84887853164&partnerID=8YFLogxK
UR - https://iovs.arvojournals.org/article.aspx?articleid=2127787
U2 - 10.1167/iovs.13-13045
DO - 10.1167/iovs.13-13045
M3 - Article
C2 - 24150755
AN - SCOPUS:84887853164
SN - 0146-0404
VL - 54
SP - 7544
EP - 7556
JO - Investigative Ophthalmology and Visual Science
JF - Investigative Ophthalmology and Visual Science
IS - 12
ER -