Linear and nonlinear bullets of the Bogoliubov-de Gennes excitations

S. Kumar, A.M. Perego*, K. Staliunas

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We report on the focalization of Bogoliubov-de Gennes excitations of the nonlinear Schrödinger equation in the defocusing regime (Gross-Pitaevskii equation for repulsive Bose-Einstein condensates) with a spatially modulated periodic potential. Exploiting the modification of the dispersion relation induced by the modulation, we demonstrate the existence of localized structures of the Bogoliubov-de Gennes excitations, in both the linear and nonlinear regimes (linear and nonlinear "bullets"). These traveling Bogoliubov-de Gennes bullets, localized both spatially and temporally in the comoving reference frame, are robust and propagate remaining stable, without spreading or filamentation. The phenomena reported in this Letter could be observed in atomic Bose-Einstein condensates in the presence of a spatially periodic potential induced by an optical lattice.

Original languageEnglish
Article number044103
Number of pages6
JournalPhysical Review Letters
Volume118
Issue number4
DOIs
Publication statusPublished - 27 Jan 2017

Fingerprint

Dive into the research topics of 'Linear and nonlinear bullets of the Bogoliubov-de Gennes excitations'. Together they form a unique fingerprint.

Cite this