Modeling and performance analysis of biomass fast pyrolysis in a solar-thermal reactor

Muktar Bashir, Xi Yu, Mohamed Hassan, Yassir Makkawi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Solar-thermal conversion of biomass through pyrolysis process is an alternative option to store energy in the form of liquid fuel, gas and bio-char. Fast pyrolysis is a highly endothermic process and essentially requires high heating rate and temperature >400 °C. This study presents a theoretical study on biomass fast pyrolysis in a solar-thermal reactor heated by a parabolic trough concentrator. The reactor is part of a novel closed loop pyrolysis-gasification process. A Eulerian-Eulerian flow model, with constitutive closure equation derived from the kinetic theory of granular flow and incorporating heat transfer, drying and pyrolysis reaction equations, was solved using ANSYS Fluent computational fluid dynamics (CFD) software. The highly endothermic pyrolysis was assumed to be satisfied by a constant solar heat flux concentrated on the reactor external wall. At the operating conditions considered, the reactor overall energy efficiency was found equal to 67.8% with the product consisting of 51.5% bio-oil, 43.7% char and 4.8% non-condensable gases. Performance analysis is presented to show the competitiveness of the proposed reactor in terms of thermal conversion efficiency and environmental impact. It is hoped that this study will contribute to the global effort on securing diverse and sustainable energy generation technologies.
Original languageEnglish
Pages (from-to)3795-3807
Number of pages13
JournalACS Sustainable Chemistry Engineering
Volume5
Issue number5
Early online date5 Apr 2017
DOIs
Publication statusPublished - 1 May 2017

Bibliographical note

This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://dx.doi.org/10.1021/acssuschemeng.6b02806

Keywords

  • biofuel
  • biomass fast pyrolysis
  • CFD modeling
  • parabolic trough
  • solar conversion
  • sustainable energy

Fingerprint

Dive into the research topics of 'Modeling and performance analysis of biomass fast pyrolysis in a solar-thermal reactor'. Together they form a unique fingerprint.

Cite this