Abstract
We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone array structures with tunable aspect ratios and interspacings. Electrochemical characterization of these arrays via the hydrogen evolution reaction (HER), using a low proton concentration electrolyte (2 mM HClO4, 0.1 M NaClO4) to reveal morphology-dependent mass transport features at the proton diffusion-controlled region, show significant changes in electrocatalytic behaviour at both WS2 and MoS2: notably onset potential shifts of 100 and 200 mV, and Tafel slope decreases of 50 and 120 mV dec−1 respectively. These improvements vary according to the geometry of the arrays and the availability of catalytic edge sites, and thus the observed electrochemical behaviour can be rationalized via kinetic and mass transport effects.
Original language | English |
---|---|
Pages (from-to) | 70-81 |
Journal | Applied Materials Today |
Volume | 11 |
Early online date | 22 Feb 2018 |
DOIs | |
Publication status | Published - 1 Jun 2018 |
Bibliographical note
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)Funding: EPSRC for financial support via fellowship (REP, EP/L015749/1) and the Centre for Doctoral Training in Fuel Cells and their Fuels (DE-L, NVR, EP/G037116/1).
Keywords
- Transition metal dichalcogenides Hydrogen evolution Nanoelectrode array Plasma etching