TY - JOUR
T1 - Numerical modeling of geogrid-reinforced flexible pavement and corresponding validation using large-scale tank test
AU - Gu, Fan
AU - Luo, Xue
AU - Luo, Rong
AU - Lytton, Robert L.
AU - Hajj, Elie Y.
AU - Siddharthan, Raj V.
PY - 2016/9/30
Y1 - 2016/9/30
N2 - This study aimed to develop a finite element model to simulate the geogrid-reinforced flexible pavement structure by taking into account the lateral confinement effect of geogrid layer, the interaction between geogrid and aggregate/soil, and the nonlinear cross-anisotropy of geogrid-reinforced unbound granular material (UGM). First, an analytical model was proposed to quantify the effect of the lateral confinement of geogrid layer on the resilient modulus of UGM. By comparing to the laboratory triaxial test results, the developed analytical model was proven to accurately predict the resilient modulus of geogrid-reinforced UGM. Second, the Goodman interface element model was used to characterize the contact behavior of geogrid-aggregate/soil interface. In order to simulate the nonlinear cross-anisotropic behavior of geogrid-reinforced UGM, a user-defined material (UMAT) subroutine was programmed using the secant modulus approach. The accuracy of the developed UMAT was verified by comparing the numerical simulation results to the analytical solutions in a virtual triaxial test. Two pairs of geogrid-reinforced and unreinforced pavement models were analyzed in this study. It was found that the geogrid reinforcement is effective in mitigating the rutting damage of base course and subgrade, but cannot significantly extend the fatigue life of flexible pavement. The geogrid reinforced in the middle of the base course is better at reducing the rutting damage of base course than that placed at the base/subgrade interface. However, the geogrid reinforcement is much more effective in reducing the rutting damage of the subgrade when it is placed at the bottom of the base course. A comprehensive large-scale tank (LST) testing program was designed to record the critical pavement responses, including the surface deflection, the tensile strain at the bottom of the asphalt concrete, and the vertical stresses in base course and subgrade. The developed geogrid-reinforced and unreinforced finite element models were finally validated by comparing the model predictions with those measurements from the LST test.
AB - This study aimed to develop a finite element model to simulate the geogrid-reinforced flexible pavement structure by taking into account the lateral confinement effect of geogrid layer, the interaction between geogrid and aggregate/soil, and the nonlinear cross-anisotropy of geogrid-reinforced unbound granular material (UGM). First, an analytical model was proposed to quantify the effect of the lateral confinement of geogrid layer on the resilient modulus of UGM. By comparing to the laboratory triaxial test results, the developed analytical model was proven to accurately predict the resilient modulus of geogrid-reinforced UGM. Second, the Goodman interface element model was used to characterize the contact behavior of geogrid-aggregate/soil interface. In order to simulate the nonlinear cross-anisotropic behavior of geogrid-reinforced UGM, a user-defined material (UMAT) subroutine was programmed using the secant modulus approach. The accuracy of the developed UMAT was verified by comparing the numerical simulation results to the analytical solutions in a virtual triaxial test. Two pairs of geogrid-reinforced and unreinforced pavement models were analyzed in this study. It was found that the geogrid reinforcement is effective in mitigating the rutting damage of base course and subgrade, but cannot significantly extend the fatigue life of flexible pavement. The geogrid reinforced in the middle of the base course is better at reducing the rutting damage of base course than that placed at the base/subgrade interface. However, the geogrid reinforcement is much more effective in reducing the rutting damage of the subgrade when it is placed at the bottom of the base course. A comprehensive large-scale tank (LST) testing program was designed to record the critical pavement responses, including the surface deflection, the tensile strain at the bottom of the asphalt concrete, and the vertical stresses in base course and subgrade. The developed geogrid-reinforced and unreinforced finite element models were finally validated by comparing the model predictions with those measurements from the LST test.
KW - Cross-anisotropy
KW - Finite element model
KW - Geogrid-reinforced flexible pavement
KW - Large-scale tank test
UR - http://www.scopus.com/inward/record.url?scp=84989881718&partnerID=8YFLogxK
UR - https://www.sciencedirect.com/science/article/pii/S0950061816310091?via%3Dihub
U2 - 10.1016/j.conbuildmat.2016.06.081
DO - 10.1016/j.conbuildmat.2016.06.081
M3 - Article
AN - SCOPUS:84989881718
SN - 0950-0618
VL - 122
SP - 214
EP - 230
JO - Construction and Building Materials
JF - Construction and Building Materials
ER -