TY - JOUR
T1 - Preeclampsia : an accelerator–brake defect disorder
AU - Ahmed, Asif
AU - Ahmad, Shakil
AU - Wang, Keqing
N1 - Abstract from the 3rd European Conference on the Biology of Hydrogen Sulfide (H2S 2015), 3–6 May 2015, Athens, Greece.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - Life's perfect partnership starts with the placenta. If we get this right, we have the best chance of healthy life. In preeclampsia, we have a failing placenta. Preeclampsia kills one pregnant woman every minute and the life expectancy of those who survive is greatly reduced. Preeclampsia is treated roughly the same way it was when Thomas Edison was making the first silent movie. Globally, millions of women risk death to give birth each year and almost 300,000 lose their lives in this process. Over half a million babies around the world die each year as a consequence of preeclampsia. Despite decades of research, we lack pharmacological agents to treat it. Maternal endothelial dysfunction is a central phenomenon responsible for the clinical signs of preeclampsia. In the late nineties, we discovered that vascular endothelial growth factor (VEGF) stimulated nitric oxide release. This led us to suggest that preeclampsia arises due to the loss of VEGF activity, possibly due to a rise in soluble Flt-1 (sFlt-1), the natural antagonist of VEGF. Researchers have shown that high sFlt-1 elicits preeclampsia-like signs in pregnant rats and sFlt-1 increases before the clinical signs of preeclampsia in pregnant women. We demonstrated that removing or reducing this culprit protein from preeclamptic placenta restored the angiogenic balance. Heme oxygenase-1 (HO-1 or Hmox1) that generates carbon monoxide (CO), biliverdin (rapidly converted to bilirubin) and iron is cytoprotective. We showed that the Hmox1/CO pathway prevents human placental injury caused by pro-inflammatory cytokines and suppresses sFlt-1 and soluble endoglin release, factors responsible for preeclampsia phenotypes. The other key enzyme we identified is the hydrogen sulfide generating cystathionine-gamma-lyase (CSE or Cth). These are the only two enzyme systems shown to suppress sFlt-1 and to act as protective pathways against preeclampsia phenotypes in animal models. We also showed that when hydrogen sulfide restores placental vasculature, it also improves lagging fetal growth. These molecules act as the inhibitor systems in pregnancy and when they fail, this triggers preeclampsia. Discovering that statins induce these enzymes led us to an RCT to develop a low-cost therapy (StAmP Trial) to prevent or treat preeclampsia. If you think of pregnancy as a car then preeclampsia is an accelerator–brake defect disorder. Inflammation, oxidative stress and an imbalance in the angiogenic milieu fuel the ‘accelerator’. It is the failure in the braking systems (the endogenous protective pathway) that results in the ‘accelerator’ going out of control until the system crashes, manifesting itself as preeclampsia.
AB - Life's perfect partnership starts with the placenta. If we get this right, we have the best chance of healthy life. In preeclampsia, we have a failing placenta. Preeclampsia kills one pregnant woman every minute and the life expectancy of those who survive is greatly reduced. Preeclampsia is treated roughly the same way it was when Thomas Edison was making the first silent movie. Globally, millions of women risk death to give birth each year and almost 300,000 lose their lives in this process. Over half a million babies around the world die each year as a consequence of preeclampsia. Despite decades of research, we lack pharmacological agents to treat it. Maternal endothelial dysfunction is a central phenomenon responsible for the clinical signs of preeclampsia. In the late nineties, we discovered that vascular endothelial growth factor (VEGF) stimulated nitric oxide release. This led us to suggest that preeclampsia arises due to the loss of VEGF activity, possibly due to a rise in soluble Flt-1 (sFlt-1), the natural antagonist of VEGF. Researchers have shown that high sFlt-1 elicits preeclampsia-like signs in pregnant rats and sFlt-1 increases before the clinical signs of preeclampsia in pregnant women. We demonstrated that removing or reducing this culprit protein from preeclamptic placenta restored the angiogenic balance. Heme oxygenase-1 (HO-1 or Hmox1) that generates carbon monoxide (CO), biliverdin (rapidly converted to bilirubin) and iron is cytoprotective. We showed that the Hmox1/CO pathway prevents human placental injury caused by pro-inflammatory cytokines and suppresses sFlt-1 and soluble endoglin release, factors responsible for preeclampsia phenotypes. The other key enzyme we identified is the hydrogen sulfide generating cystathionine-gamma-lyase (CSE or Cth). These are the only two enzyme systems shown to suppress sFlt-1 and to act as protective pathways against preeclampsia phenotypes in animal models. We also showed that when hydrogen sulfide restores placental vasculature, it also improves lagging fetal growth. These molecules act as the inhibitor systems in pregnancy and when they fail, this triggers preeclampsia. Discovering that statins induce these enzymes led us to an RCT to develop a low-cost therapy (StAmP Trial) to prevent or treat preeclampsia. If you think of pregnancy as a car then preeclampsia is an accelerator–brake defect disorder. Inflammation, oxidative stress and an imbalance in the angiogenic milieu fuel the ‘accelerator’. It is the failure in the braking systems (the endogenous protective pathway) that results in the ‘accelerator’ going out of control until the system crashes, manifesting itself as preeclampsia.
U2 - 10.1016/j.niox.2015.02.020
DO - 10.1016/j.niox.2015.02.020
M3 - Article
SN - 1089-8603
VL - 47
SP - S9
JO - Nitric Oxide
JF - Nitric Oxide
IS - Suppl.1
M1 - OP14
T2 - 3rd European Conference on the Biology of Hydrogen Sulfide
Y2 - 3 May 2015 through 6 May 2015
ER -