TY - JOUR
T1 - Probabilistic algorithms for MEG/EEG source reconstruction using temporal basis functions learned from data.
AU - Zumer, JM
AU - Attias, HT
AU - Sekihara, K
AU - Nagarajan, SS
N1 - © 2008, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
PY - 2008/7/1
Y1 - 2008/7/1
N2 - We present two related probabilistic methods for neural source reconstruction from MEG/EEG data that reduce effects of interference, noise, and correlated sources. Both methods localize source activity using a linear mixture of temporal basis functions (TBFs) learned from the data. In contrast to existing methods that use predetermined TBFs, we compute TBFs from data using a graphical factor analysis based model [Nagarajan, S.S., Attias, H.T., Hild, K.E., Sekihara, K., 2007a. A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data. Stat Med 26, 3886–3910], which separates evoked or event-related source activity from ongoing spontaneous background brain activity. Both algorithms compute an optimal weighting of these TBFs at each voxel to provide a spatiotemporal map of activity across the brain and a source image map from the likelihood of a dipole source at each voxel. We explicitly model, with two different robust parameterizations, the contribution from signals outside a voxel of interest. The two models differ in a trade-off of computational speed versus accuracy of learning the unknown interference contributions. Performance in simulations and real data, both with large noise and interference and/or correlated sources, demonstrates significant improvement over existing source localization methods.
AB - We present two related probabilistic methods for neural source reconstruction from MEG/EEG data that reduce effects of interference, noise, and correlated sources. Both methods localize source activity using a linear mixture of temporal basis functions (TBFs) learned from the data. In contrast to existing methods that use predetermined TBFs, we compute TBFs from data using a graphical factor analysis based model [Nagarajan, S.S., Attias, H.T., Hild, K.E., Sekihara, K., 2007a. A probabilistic algorithm for robust interference suppression in bioelectromagnetic sensor data. Stat Med 26, 3886–3910], which separates evoked or event-related source activity from ongoing spontaneous background brain activity. Both algorithms compute an optimal weighting of these TBFs at each voxel to provide a spatiotemporal map of activity across the brain and a source image map from the likelihood of a dipole source at each voxel. We explicitly model, with two different robust parameterizations, the contribution from signals outside a voxel of interest. The two models differ in a trade-off of computational speed versus accuracy of learning the unknown interference contributions. Performance in simulations and real data, both with large noise and interference and/or correlated sources, demonstrates significant improvement over existing source localization methods.
UR - https://www.sciencedirect.com/science/article/pii/S1053811908001365?via%3Dihub
U2 - 10.1016/j.neuroimage.2008.02.006
DO - 10.1016/j.neuroimage.2008.02.006
M3 - Article
C2 - 18455439
SN - 1053-8119
VL - 41
SP - 924
EP - 940
JO - NeuroImage
JF - NeuroImage
IS - 3
ER -