Producing Useful Chemicals Using a Nuclear Reactor

Arran Plant, Vesna Najdanovic*, Malcolm Joyce, Luka Snoj, Anže Jazbec

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review


In this paper, the irradiation of glycerol and ethylene glycol by either mixed (neutron-γ) or γ-only (γ) fields at the TRIGA reactor of the Jožef Stefan Institute is described. This is highly relevant to future applications of fission reactor systems to produce useful feedstock derivatives from organic waste, beyond the production of heat and power.

Samples of glycerol and ethyl glycol have been exposed to neutron-gamma radiation with fast neutron fluxes ranging from 7.7×1010 to 3×1012 cm−2s−1 and gamma-only irradiation at maximum dose-rates of 492 and 10 kGy hr−1, respectively. A study of the dependence of product yield versus absorbed dose has been conducted, for total dose ranges of 1 to 100 kGy. The products of these exposures have been identified through Gas Chromatography – Mass Spectrometry (GC-MS) techniques.

Analysis comparing neutron-gamma irradiated samples of ethylene glycol and glycerol with gamma-irradiated samples shows no detectable qualitative difference between either irradiation type. Although, additional radiolysis products were detected when compared with available literature; ethyl acetate from ethylene glycol and solketal from glycerol. Quantitatively, neutron-gamma irradiation seems to be less effective at producing acetaldehyde from ethylene glycol, compared with gamma-only which can be explained through neutron moderation and consequent heating effects due to the borosilicate vials.
Original languageEnglish
Article number09003
Number of pages4
JournalEPJ Web of Conferences
Publication statusPublished - 20 Jan 2020
EventANIMMA 2019 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications - Portoroz, Slovenia
Duration: 17 Jun 2019 → …

Bibliographical note

© The Authors, published by EDP Sciences, 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Dive into the research topics of 'Producing Useful Chemicals Using a Nuclear Reactor'. Together they form a unique fingerprint.

Cite this