Abstract
Summary form only given. Raman polarizers are devices able to amplify and simultaneously repolarize optical signals, exploiting the polarization attraction phenomenon induced by the Raman gain anisotropy [1, 2]. To characterize the degree of polarization (DOP) of the signal as a function of the Raman gain (G) in the case of the co-propagating pump and signal pulses, the following formula for ideal Raman polarizer has been recently derived [1]: DOP = 1 - G-1.Detailed experimental study demonstrated the limited validity of this formula in the context of the missed DOP dependence on polarization mode dispersion (PMD) parameter Dp and the random birefringence correlation length Lc [3,4]. Here for the first time we develop a new model of a Raman polarizer that matches the experimental data by accounting for a fiber random birefringence properties in terms of parameters Dp and Lc. Based on our previous model of a fiber Raman amplifier [3,4] utilizing rigorous technique of averaging over the random birefringence of fiber in the case of negligible pump depletion, we derive the following equations for DOP as function of G, Dp and Lc:
Original language | English |
---|---|
Title of host publication | The European Conference on Lasers and Electro-Optics, CLEO_Europe 2017 |
Volume | Part F82-CLEO_Europe 2017 |
ISBN (Electronic) | 9781557528209 |
DOIs | |
Publication status | Published - 30 Oct 2017 |
Event | The European Conference on Lasers and Electro-Optics, CLEO_Europe 2017 - Munich, Germany Duration: 25 Jun 2017 → 29 Jun 2017 |
Conference
Conference | The European Conference on Lasers and Electro-Optics, CLEO_Europe 2017 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 25/06/17 → 29/06/17 |