Abstract
A class of rotaxane is created, not by encapsulating a conventional linear thread, but rather by wrapping a large cucurbit[10]uril macrocycle about a three-dimensional, cylindrical, nanosized, self-assembled supramolecular helicate as the axle. The resulting pseudo-rotaxane is readily converted into a proper interlocked rotaxane by adding branch points to the helicate strands that form the surface of the cylinder (like branches and roots on a tree trunk). The supramolecular cylinder that forms the axle is itself a member of a unique and remarkable class of helicate metallo-drugs that bind Y-shaped DNA junction structures and induce cell death. While pseudo-rotaxanation does not modify the DNA-binding properties, proper, mechanically-interlocked rotaxanation transforms the DNA-binding and biological activity of the cylinder. The ability of the cylinder to de-thread from the rotaxane (and thus to bind DNA junction structures) is controlled by the extent of branching: fully-branched cylinders are locked inside the cucurbit[10]uril macrocycle, while cylinders with incomplete branch points can de-thread from the rotaxane in response to competitor guests. The number of branch points can thus afford kinetic control over the drug de-threading and release.
Original language | English |
---|---|
Pages (from-to) | 20651-20660 |
Number of pages | 10 |
Journal | Journal of the American Chemical Society |
Volume | 142 |
Issue number | 49 |
Early online date | 20 Nov 2020 |
DOIs | |
Publication status | Published - 9 Dec 2020 |
Bibliographical note
This is an open access article published under a Creative Commons Attribution (CC-BY)License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.
Keywords
- Bridged-Ring Compounds/chemistry
- Coordination Complexes/chemistry
- DNA/chemistry
- Imidazoles/chemistry
- Ligands
- Metals/chemistry
- Nanostructures/chemistry
- Rotaxanes/chemistry