Abstract
Purpose: To determine the critical fitting characteristics of modern soft contact lens fits and from this to devise a simplified recording scheme.
Methods: Ten subjects (aged 28.1 ± 7.4 years) wore eight different modern soft contact lenses. Video was captured and analysed of blink (central and up-gaze), excursion lag (up, down, right and left gaze) and push-up movement, centration and coverage.
Results: Lens centration was on average close to the corneal centre. Movement on blink was significantly smaller in up-gaze than in primary-gaze (p<0.001). Lag was greatest in down-gaze and least in up-gaze (p<0.001). Push-up test recovery speed was 1.32±0.73mm/s. Overall lens movement was determined best by assessing horizontal lag, movement on blink in up-gaze and push-up recovery speed. Steeper lens base-curves did not have a significant effect on lens fit characteristics. Contact lens material did influence lens fit characteristics, particularly silicone-hydrogels which generally had lower centration and a faster push-up speed of recovery than HEMA lenses (p<0.05).
Conclusion: Lag on vertical gaze, and movement on blink in primary gaze generally provide little extra information on overall lens movement compared to horizontal lag, movement on blink in up gaze and push-up recovery speed. They can therefore be excluded from a simplified recording scheme. A simplified and comprehensive soft contact lens fit recording system could consist of a cross-hairs indicating the centre of the cornea; a circle to indicate the lens centration; a mark on the relevant position of the circle to indicate any limbal incursion; a grade (‘B’) below for movement with blink in up-gaze, a grade (‘L’) to the side for horizontal lag and a grade above (‘P’) for the assessed push-up recovery speed.
Methods: Ten subjects (aged 28.1 ± 7.4 years) wore eight different modern soft contact lenses. Video was captured and analysed of blink (central and up-gaze), excursion lag (up, down, right and left gaze) and push-up movement, centration and coverage.
Results: Lens centration was on average close to the corneal centre. Movement on blink was significantly smaller in up-gaze than in primary-gaze (p<0.001). Lag was greatest in down-gaze and least in up-gaze (p<0.001). Push-up test recovery speed was 1.32±0.73mm/s. Overall lens movement was determined best by assessing horizontal lag, movement on blink in up-gaze and push-up recovery speed. Steeper lens base-curves did not have a significant effect on lens fit characteristics. Contact lens material did influence lens fit characteristics, particularly silicone-hydrogels which generally had lower centration and a faster push-up speed of recovery than HEMA lenses (p<0.05).
Conclusion: Lag on vertical gaze, and movement on blink in primary gaze generally provide little extra information on overall lens movement compared to horizontal lag, movement on blink in up gaze and push-up recovery speed. They can therefore be excluded from a simplified recording scheme. A simplified and comprehensive soft contact lens fit recording system could consist of a cross-hairs indicating the centre of the cornea; a circle to indicate the lens centration; a mark on the relevant position of the circle to indicate any limbal incursion; a grade (‘B’) below for movement with blink in up-gaze, a grade (‘L’) to the side for horizontal lag and a grade above (‘P’) for the assessed push-up recovery speed.
Original language | English |
---|---|
Pages (from-to) | 37-42 |
Number of pages | 6 |
Journal | Contact Lens and Anterior Eye |
Volume | 32 |
Issue number | 1 |
Early online date | 22 Jan 2009 |
DOIs | |
Publication status | Published - Feb 2009 |
Keywords
- adult
- hydrophilic contact lenses
- evaluation studies as topic
- female
- humans
- male
- patient satisfaction
- prosthesis design
- prosthesis fitting