Tear film lipids: dynamic composition and clinical performance

Brian Tighe, Amandeep Panaser, Val Franklin, Darren Campbell

Research output: Unpublished contribution to conferencePoster


Purpose: Meibomian-derived lipid secretions are well characterised but their subsequent fate in the ocular environment is less well understood. Phospholipids are thought to facilitate the interface between aqueous and lipid layers of the tear film and to be involved in ocular lubrication processes. We have extended our previous studies on phospholipid levels in the tear film to encompass the fate of polar and non-polar lipids in progressive accumulation and aging processes on both conventional and silicone-modified hydrogel lenses. This is an important aspect of the developing understanding of the role of lipids in the clinical performance of silicone hydrogels.
Method: Several techniques were used to identify lipids in the tear film. Mass-spectrometric methods included Agilent 1100-based liquid chromatography coupled to mass spectrometry (LCMS) and Perkin Elmer gas chromatography mass spectrometry (GCMS). Thin layer chromatography (TLC) was used for separation of lipids on the basis of increasing solvent polarity. Routine assay of lipid extractions from patient-worn lenses was carried out using a Hewlett Packard 1090 liquid chromatograph coupled to both uv and Agilent 1100 fluorescence detection. A range of histological together with optical, and electron microscope techniques was used in deposit analysis.
Results: Progressive lipid uptake was assessed in various ways, including: composition changes with wear time, differential lipid penetrate into the lens matrix and, particularly, the extent to which lipids become unextractable as a function of wear time. Solvent-based separation and HPLC gave consistent results indicating that the polarity of lipid classes decreased as follows: phospholipids/fatty acids > triglycerides > cholesterol/cholesteryl esters. Tear lipids were found to show autofluorescence—which underpinned the value of fluorescence microscopy and fluorescence detection coupled with HPLC separation. The most fluorescent lipids were found to be cholesteryl esters; histological techniques coupled with fluorescence microscopy indicated that white spots (’’jelly bumps’’) formed on silicone hydrogel lenses contain a high proportion of cholesteryl esters. Lipid profiles averaged for 30 symptomatic and 30 asymptomatic contact lens wearers were compiled. Peak classes were split into: cholesterol (C), cholesteryl esters (CE), glycerides (G), polar fatty acids/phospholipids (PL). The lipid ratio for ymptomatic/symptomatic
was 0.6 ± 0.1 for all classes except one—the cholesterol ratio was 0.2 ± 0.05. Significantly the PL ratio was no different from that of any other class except cholesterol. Chromatography indicated that: lipid polarity decreased with depth of penetration and that lipid extractability decreased with wear time.
Conclusions: Meibomian lipid composition differs from that in the tear film and on worn lenses. Although the same broad lipid classes were obtained by extraction from all lenses and all patients studied, quantities vary with wear and material. Lipid extractability diminishes with wear time regardless of the use of cleaning regimes. Dry eye symptoms in contact lens wear are frequently linked to lipid layer behaviour but seem to relate more to total lipid than to specific composition. Understanding the detail of lipid related processes is an important element of improving the clinical performance of materials and care solutions.
Original languageEnglish
Publication statusPublished - 2009
EventBritish Contact Lens Association - Birmingham, United Kingdom
Duration: 27 May 201030 May 2010


ConferenceBritish Contact Lens Association
Country/TerritoryUnited Kingdom

Bibliographical note

Abstract pulbished on Abstracts / Contact Lens & Anterior Eye 32 (2009), 237-238. DOI http://www.sciencedirect.com/science/article/pii/S136704840900099X


Dive into the research topics of 'Tear film lipids: dynamic composition and clinical performance'. Together they form a unique fingerprint.

Cite this