Abstract
An in situ XPS study of water, methanol and methyl acetate adsorption over as-synthesised and calcined MgO nanocatalysts is reported with a view to gaining insight into the surface adsorption of key components relevant to fatty acid methyl esters (biodiesel) production during the transesterification of triglycerides with methanol. High temperature calcined NanoMgO-700 adsorbed all three species more readily than the parent material due to the higher density of electron-rich (111) and (110) facets exposed over the larger crystallites. Water and methanol chemisorb over the NanoMgO-700 through the conversion of surface O2 − sites to OH− and coincident creation of Mg-OH or Mg-OCH3 moieties respectively. A model is proposed in which the dissociative chemisorption of methanol occurs preferentially over defect and edge sites of NanoMgO-700, with higher methanol coverages resulting in physisorption over weakly basic (100) facets. Methyl acetate undergoes more complex surface chemistry over NanoMgO-700, with C–H dissociation and ester cleavage forming surface hydroxyl and acetate species even at extremely low coverages, indicative of preferential adsorption at defects. Comparison of C 1s spectra with spent catalysts from tributyrin transesterification suggest that ester hydrolysis plays a key factor in the deactivation of MgO catalysts for biodiesel production.
Original language | English |
---|---|
Pages (from-to) | 170-178 |
Number of pages | 9 |
Journal | Surface science |
Volume | 646 |
Early online date | 14 Jul 2015 |
DOIs | |
Publication status | Published - Apr 2016 |
Bibliographical note
-© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/Funding: EPSRC (EP/F063423/1; EP/K000616/1; and Leadership Fellowship EP/G007594/4); and Royal Society for an Industry Fellowship (IF100206).
Keywords
- biodiesel synthesis
- ester
- in-situ XPS
- methanol
- nanoparticulate MgO
- solid base