Toward a priori noise characterization for real-time edge-aware denoising in fluoroscopic devices

Emilio Andreozzi, Antonio Fratini, Daniele Esposito, Mario Cesarelli, Paolo Bifulco*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Background: Low-dose X-ray images have become increasingly popular in the last decades, due to the need to guarantee the lowest reasonable patient’s exposure. Dose reduction causes a substantial increase of quantum noise, which needs to be suitably suppressed. In particular, real-time denoising is required to support common interventional fluoroscopy procedures. The knowledge of noise statistics provides precious information that helps to improve denoising performances, thus making noise estimation a crucial task for effective denoising strategies. Noise statistics depend on different factors, but are mainly influenced by the X-ray tube settings, which may vary even within the same procedure. This complicates real-time denoising, because noise estimation should be repeated after any changes in tube settings, which would be hardly feasible in practice. This work investigates the feasibility of an a priori characterization of noise for a single fluoroscopic device, which would obviate the need for inferring noise statics prior to each new images acquisition. The noise estimation algorithm used in this study was tested in silico to assess its accuracy and reliability. Then, real sequences were acquired by imaging two different X-ray phantoms via a commercial fluoroscopic device at various X-ray tube settings. Finally, noise estimation was performed to assess the matching of noise statistics inferred from two different sequences, acquired independently in the same operating conditions. Results: The noise estimation algorithm proved capable of retrieving noise statistics, regardless of the particular imaged scene, also achieving good results even by using only 10 frames (mean percentage error lower than 2%). The tests performed on the real fluoroscopic sequences confirmed that the estimated noise statistics are independent of the particular informational content of the scene from which they have been inferred, as they turned out to be consistent in sequences of the two different phantoms acquired independently with the same X-ray tube settings. Conclusions: The encouraging results suggest that an a priori characterization of noise for a single fluoroscopic device is feasible and could improve the actual implementation of real-time denoising strategies that take advantage of noise statistics to improve the trade-off between noise reduction and details preservation.
Original languageEnglish
Article number36
JournalBioMedical Engineering OnLine
Issue number1
Publication statusPublished - 7 Apr 2021

Bibliographical note

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( applies
to the data made available in this article, unless otherwise stated in a credit line to the data.


  • Edge-aware denoising
  • Fluoroscopy
  • Noise characterization
  • Noise estimation
  • Poisson noise
  • Quantum noise
  • Real-time denoising
  • X-ray imaging


Dive into the research topics of 'Toward a priori noise characterization for real-time edge-aware denoising in fluoroscopic devices'. Together they form a unique fingerprint.

Cite this