Towards an in-vitro multi-cellular human airways model for evaluating the effects of Electronic cigarettes

Pranav Vasanthi Bathri Narayanan, Laura J. Leslie, James E. Brown, Lindsay J. Marshall

Research output: Unpublished contribution to conferencePoster


Despite being poor representations of human airways architecture, innumerable animals, especially rodents, have been used in cigarette smoking studies. The advent of Electronic-cigarettes (ECs) could herald a further escalation, with data from in-vivo experiments already increasingly published. The current study aims to demonstrate the application of a human in-vitro model for evaluation of EC, providing alternatives to the outdated in-vivo models. The human airways model consists of relevant cell types that would be directly encountered during vaping. Human bronchial epithelial cells and pulmonary fibroblasts were co-cultured at air-liquid interface (ALI) under conditions that promote mucociliary differentiation, tight junction formation and mucin production. An in-house built smoking machine was used to deliver vapour from a commercially available EC (ECV) or whole cigarette smoke (WCS) to the co-culture model according to ISO standard. This methodology closely mimics human smoking behaviour, as opposed to enforced nasal inhalation in rodent smoking/vaping model. 24h post exposure, XTT cell viability analysis showed that WCS caused a significant decrease (p<0.0001) in cell viability (<70%) compared to control cells exposed to air only. ECV on the other hand did not have a significant impact on cell viability, thus suggesting low cytotoxicity. This difference in effect correlates with a number of existing in-vitro and in-vivo ECV/WCS studies, illustrating that the current model is a relevant, more realistic platform for EC studies compared to animal models. Further, such an airways model resembling in-vivo physiology can be used to study COPD progression and development, a condition difficult to replicate in rodents.
Original languageEnglish
Publication statusPublished - 2016
EventAnimal Replacement Science Conference 2016: Advances, Awareness, Applications - London, United Kingdom
Duration: 9 Dec 2016 → …


ConferenceAnimal Replacement Science Conference 2016
Country/TerritoryUnited Kingdom
Period9/12/16 → …


Dive into the research topics of 'Towards an in-vitro multi-cellular human airways model for evaluating the effects of Electronic cigarettes'. Together they form a unique fingerprint.

Cite this