Abstract
In Autonomous and Intelligent systems (AIS), the decision-making process can be divided into two parts: (i) the priorities of the requirements are determined at design-time; (ii) design selection follows where alternatives are compared, and the preferred alternatives are chosen autonomously by the AIS. Runtime design selection is a trade-off analysis between non-functional requirements (NFRs) that uses optimisation methods, including decision-analysis and utility theory. The aim is to select the design option yielding the highest expected utility. A problem with these techniques is that they use a uni-scalar cumulative utility value to represent a combined priority for all the NFRs. However, this uni-scalar value doesn't give information about the varying impacts of actions under uncertain environmental contexts on the satisfaction priorities of individual NFRs. In this paper, we present a novel use of Multi-Reward Partially Observable Markov Decision Process (MR-POMDP) to support reasoning of separate NFR priorities. We discuss the use of rewards in MR-POMDPs as a way to support AIS with (a) priority-aware decision-making; and (b) maintain service-level agreement, by autonomously tuning NFRs' priorities to new contexts and based on data gathered at runtime. We evaluate our approach by applying it to a substantial Network case.
Original language | English |
---|---|
Title of host publication | Proceedings of the 36th Annual ACM Symposium on Applied Computing, SAC 2021 |
Publisher | ACM |
Pages | 1328–1337 |
Number of pages | 10 |
ISBN (Electronic) | 978-1-4503-8104-8 |
DOIs | |
Publication status | Published - 22 Mar 2021 |
Publication series
Name | Proceedings of the 36th Annual ACM Symposium on Applied Computing |
---|---|
Publisher | ACM |
Bibliographical note
© 2021 Copyright held by the owner/author(s). CC BYFunding: This work has been partially supported by The Lerverhulme Trust Fellowship "QuantUn: quantification of uncertainty using Bayesian surprises" (Grant No. RF-2019-548/9) and the EPSRC Research Project Twenty20Insight (Grant No. EP/T017627/1).
Keywords
- autonomous and intelligent software systems
- decision-making
- non-functional requirements
- priorities
- runtime models
Fingerprint
Dive into the research topics of 'Towards priority-awareness in autonomous intelligent systems'. Together they form a unique fingerprint.Student theses
-
Improving Priority-Awareness Of Non-Functional Requirements During Decision-Making In Self-Adaptive Systems
Samin, H. (Author), Grace, P. (Supervisor) & Sawyer, P. (Supervisor), Jul 2022Student thesis: Doctoral Thesis › Doctor of Philosophy
File