TY - CONF
T1 - Uncertainty evaluation of an axi-symmetric measurement machine
AU - Muelaner, Jody
AU - Chappell, Mark
AU - Francis, Andrew
AU - Maropoulos, Paul
PY - 2015
Y1 - 2015
N2 - This paper describes a method of uncertainty evaluation for axi-symmetric measurement machines which is compliant with GUM and PUMA methodologies. Specialized measuring machines for the inspection of axisymmetric components enable the measurement of properties such as roundness (radial runout), axial runout and coning. These machines typically consist of a rotary table and a number of contact measurement probes located on slideways. Sources of uncertainty include the probe calibration process, probe repeatability, probe alignment, geometric errors in the rotary table, the dimensional stability of the structure holding the probes and form errors in the reference hemisphere which is used to calibrate the system. The generic method is described and an evaluation of an industrial machine is described as a worked example. Type A uncertainties were obtained from a repeatability study of the probe calibration process, a repeatability study of the actual measurement process, a system stability test and an elastic deformation test. Type B uncertainties were obtained from calibration certificates and estimates. Expanded uncertainties, at 95% confidence, were then calculated for the measurement of; radial runout (1.2 µm with a plunger probe or 1.7 µm with a lever probe); axial runout (1.2 µm with a plunger probe or 1.5 µm with a lever probe); and coning/swash (0.44 arc seconds with a plunger probe or 0.60 arc seconds with a lever probe).
AB - This paper describes a method of uncertainty evaluation for axi-symmetric measurement machines which is compliant with GUM and PUMA methodologies. Specialized measuring machines for the inspection of axisymmetric components enable the measurement of properties such as roundness (radial runout), axial runout and coning. These machines typically consist of a rotary table and a number of contact measurement probes located on slideways. Sources of uncertainty include the probe calibration process, probe repeatability, probe alignment, geometric errors in the rotary table, the dimensional stability of the structure holding the probes and form errors in the reference hemisphere which is used to calibrate the system. The generic method is described and an evaluation of an industrial machine is described as a worked example. Type A uncertainties were obtained from a repeatability study of the probe calibration process, a repeatability study of the actual measurement process, a system stability test and an elastic deformation test. Type B uncertainties were obtained from calibration certificates and estimates. Expanded uncertainties, at 95% confidence, were then calculated for the measurement of; radial runout (1.2 µm with a plunger probe or 1.7 µm with a lever probe); axial runout (1.2 µm with a plunger probe or 1.5 µm with a lever probe); and coning/swash (0.44 arc seconds with a plunger probe or 0.60 arc seconds with a lever probe).
M3 - Unpublished Conference Paper
T2 - 38th MATADOR conference on advanced manufacturing
Y2 - 28 March 2015 through 30 March 2015
ER -